Brown rice

Phillips, J., Muir, J. G., Birkett, A., Lu, Z. X., Jones, G. P., O'Dea, K., & Young, G. P. (1995). Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. The American journal of clinical nutrition, 62(1), 121–130. https://doi.org/10.1093/ajcn/62.1.121

Ravichanthiran, K., Ma, Z. F., Zhang, H., Cao, Y., Wang, C. W., Muhammad, S., Aglago, E. K., Zhang, Y., Jin, Y., & Pan, B. (2018). Phytochemical Profile of Brown Rice and Its Nutrigenomic Implications. Antioxidants (Basel, Switzerland), 7(6), 71. https://doi.org/10.3390/antiox7060071

Lee, J. S., Sreenivasulu, N., Hamilton, R. S., & Kohli, A. (2019). Brown Rice, a Diet Rich in Health Promoting Properties. Journal of nutritional science and vitaminology, 65(Supplement), S26–S28. https://doi.org/10.3177/jnsv.65.S26

Welch, A. A., Skinner, J., & Hickson, M. (2017). Dietary Magnesium May Be Protective for Aging of Bone and Skeletal Muscle in Middle and Younger Older Age Men and Women: Cross-Sectional Findings from the UK Biobank Cohort. Nutrients, 9(11), 1189. https://doi.org/10.3390/nu9111189

Kunutsor, S. K., Whitehouse, M. R., Blom, A. W., & Laukkanen, J. A. (2017). Low serum magnesium levels are associated with increased risk of fractures: a long-term prospective cohort study. European journal of epidemiology, 32(7), 593–603. https://doi.org/10.1007/s10654-017-0242-2 

Edamame

Moon, J., & Koh, G. (2020). Clinical Evidence and Mechanisms of High-Protein Diet-Induced Weight Loss. Journal of obesity & metabolic syndrome, 29(3), 166–173. https://doi.org/10.7570/jomes20028

Clark, M. J., & Slavin, J. L. (2013). The effect of fiber on satiety and food intake: a systematic review. Journal of the American College of Nutrition, 32(3), 200–211. https://doi.org/10.1080/07315724.2013.791194

Plant diversity and Polyphenols

Aune, D., Giovannucci, E., Boffetta, P., Fadnes, L. T., Keum, N., Norat, T., Greenwood, D. C., Riboli, E., Vatten, L. J., & Tonstad, S. (2017). Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. International journal of epidemiology, 46(3), 1029–1056. https://doi.org/10.1093/ije/dyw319

Liu R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American journal of clinical nutrition, 78(3 Suppl), 517S–520S. https://doi.org/10.1093/ajcn/78.3.517S

McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., Aksenov, A. A., Behsaz, B., Brennan, C., Chen, Y., DeRight Goldasich, L., Dorrestein, P. C., Dunn, R. R., Fahimipour, A. K., Gaffney, J., Gilbert, J. A., Gogul, G., Green, J. L., Hugenholtz, P., Humphrey, G., … Knight, R. (2018). American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems, 3(3), e00031-18. https://doi.org/10.1128/mSystems.00031-18

Lu?i?, D., Pavlovi?, I., Brklja?i?, L., Bogdanovi?, S., Farkaš, V., Cedilak, A., Nani?, L., Rubelj, I., & Salopek-Sondi, B. (2023). Antioxidant and Antiproliferative Activities of Kale (Brassica oleracea L. Var. acephalaDC.) and Wild Cabbage (Brassica incana Ten.) Polyphenolic Extracts. Molecules (Basel, Switzerland), 28(4), 1840. https://doi.org/10.3390/molecules28041840

Kaulmann, A., & Bohn, T. (2014). Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition research (New York, N.Y.), 34(11), 907–929. https://doi.org/10.1016/j.nutres.2014.07.010

Aune, D., Keum, N., Giovannucci, E., Fadnes, L. T., Boffetta, P., Greenwood, D. C., Tonstad, S., Vatten, L. J., Riboli, E., & Norat, T. (2018). Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. The American journal of clinical nutrition, 108(5), 1069–1091. https://doi.org/10.1093/ajcn/nqy097

Lachance, J. C., Radhakrishnan, S., Madiwale, G., Guerrier, S., & Vanamala, J. K. P. (2020). Targeting hallmarks of cancer with a food-system-based approach. Nutrition (Burbank, Los Angeles County, Calif.), 69, 110563. https://doi.org/10.1016/j.nut.2019.110563

Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., & Restani, P. (2021). Polyphenols and Human Health: The Role of Bioavailability. Nutrients, 13(1), 273. https://doi.org/10.3390/nu13010273

Del Bo', C., Bernardi, S., Marino, M., Porrini, M., Tucci, M., Guglielmetti, S., Cherubini, A., Carrieri, B., Kirkup, B., Kroon, P., Zamora-Ros, R., Liberona, N. H., Andres-Lacueva, C., & Riso, P. (2019). Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern?. Nutrients, 11(6), 1355. https://doi.org/10.3390/nu11061355

Cory, H., Passarelli, S., Szeto, J., Tamez, M., & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in nutrition, 5, 87. https://doi.org/10.3389/fnut.2018.00087

Avocado

Wang, L., Tao, L., Hao, L., Stanley, T. H., Huang, K. H., Lambert, J. D., & Kris-Etherton, P. M. (2020). A Moderate-Fat Diet with One Avocado per Day Increases Plasma Antioxidants and Decreases the Oxidation of Small, Dense LDL in Adults with Overweight and Obesity: A Randomized Controlled Trial. The Journal of nutrition, 150(2), 276–284. https://doi.org/10.1093/jn/nxz231

Mahmassani, H. A., Avendano, E. E., Raman, G., & Johnson, E. J. (2018). Avocado consumption and risk factors for heart disease: a systematic review and meta-analysis. The American journal of clinical nutrition, 107(4), 523–536. https://doi.org/10.1093/ajcn/nqx078

Ford, N. A., & Liu, A. G. (2020). The Forgotten Fruit: A Case for Consuming Avocado Within the Traditional Mediterranean Diet. Frontiers in nutrition, 7, 78. https://doi.org/10.3389/fnut.2020.00078

Scott, T. M., Rasmussen, H. M., Chen, O., & Johnson, E. J. (2017). Avocado Consumption Increases Macular Pigment Density in Older Adults: A Randomized, Controlled Trial. Nutrients, 9(9), 919. https://doi.org/10.3390/nu9090919

Carrots

Yi, X., Li, J., Liao, D., Peng, G., Zheng, X., Xu, H., Zhang, T., & Ai, J. (2023). Carrot and carotene and multiple health outcomes: an umbrella review of the evidence. Journal of the science of food and agriculture, 103(5), 2251–2261. https://doi.org/10.1002/jsfa.12425

Evans, J. R., & Lawrenson, J. G. (2012). Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. The Cochrane database of systematic reviews, 11, CD000254. https://doi.org/10.1002/14651858.CD000254.pub3

Polcz, M. E., & Barbul, A. (2019). The Role of Vitamin A in Wound Healing. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition, 34(5), 695–700. https://doi.org/10.1002/ncp.10376

Salmon

Dighriri, I. M., Alsubaie, A. M., Hakami, F. M., Hamithi, D. M., Alshekh, M. M., Khobrani, F. A., Dalak, F. E., Hakami, A. A., Alsueaadi, E. H., Alsaawi, L. S., Alshammari, S. F., Alqahtani, A. S., Alawi, I. A., Aljuaid, A. A., & Tawhari, M. Q. (2022). Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus, 14(10), e30091. https://doi.org/10.7759/cureus.30091

Harris WS. Omega-3 fatty acids. In: Coates PM, Betz JM, Blackman MR, et al., eds. Encyclopedia of Dietary Supplements. 2nd ed. London and New York: Informa Healthcare; 2010:577-86.

Gould, J. F., Smithers, L. G., & Makrides, M. (2013). The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: a systematic review and meta-analysis of randomized controlled trials. The American journal of clinical nutrition, 97(3), 531–544. https://doi.org/10.3945/ajcn.112.045781

Wei, B. Z., Li, L., Dong, C. W., Tan, C. C., Alzheimer’s Disease Neuroimaging Initiative, & Xu, W. (2023). The Relationship of Omega-3 Fatty Acids with Dementia and Cognitive Decline: Evidence from Prospective Cohort Studies of Supplementation, Dietary Intake, and Blood Markers. The American journal of clinical nutrition, 117(6), 1096–1109. https://doi.org/10.1016/j.ajcnut.2023.04.001

Zhang, Y., Chen, J., Qiu, J., Li, Y., Wang, J., & Jiao, J. (2016). Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. The American journal of clinical nutrition, 103(2), 330–340. https://doi.org/10.3945/ajcn.115.124081

Li, F., Liu, X., & Zhang, D. (2016). Fish consumption and risk of depression: a meta-analysis. Journal of epidemiology and community health, 70(3), 299–304. https://doi.org/10.1136/jech-2015-206278

Mazereeuw, G., Lanctôt, K. L., Chau, S. A., Swardfager, W., & Herrmann, N. (2012). Effects of ω-3 fatty acids on cognitive performance: a meta-analysis. Neurobiology of aging, 33(7), 1482.e17–1482.e1.482E29. https://doi.org/10.1016/j.neurobiolaging.2011.12.014

Miso

Watanabe, H., Kashimoto, N., Kajimura, J., & Kamiya, K. (2006). A miso (Japanese soybean paste) diet conferred greater protection against hypertension than a sodium chloride diet in Dahl salt-sensitive rats. Hypertension research : official journal of the Japanese Society of Hypertension, 29(9), 731–738. https://doi.org/10.1291/hypres.29.731

Ito, K., Miyata, K., Mohri, M., Origuchi, H., & Yamamoto, H. (2017). The Effects of the Habitual Consumption of Miso Soup on the Blood Pressure and Heart Rate of Japanese Adults: A Cross-sectional Study of a Health Examination. Internal medicine (Tokyo, Japan), 56(1), 23–29. https://doi.org/10.2169/internalmedicine.56.7538

Allwood, J. G., Wakeling, L. T., & Bean, D. C. (2021). Fermentation and the microbial community of Japanese koji and miso: A review. Journal of food science, 86(6), 2194–2207. https://doi.org/10.1111/1750-3841.15773

Kondo, H., Sakuyama Tomari, H., Yamakawa, S., Kitagawa, M., Yamada, M., Itou, S., Yamamoto, T., & Uehara, Y. (2019). Long-term intake of miso soup decreases nighttime blood pressure in subjects with high-normal blood pressure or stage I hypertension. Hypertension research : official journal of the Japanese Society of Hypertension, 42(11), 1757–1767. https://doi.org/10.1038/s41440-019-0304-9

Anderson, J. W., Johnstone, B. M., & Cook-Newell, M. E. (1995). Meta-analysis of the effects of soy protein intake on serum lipids. The New England journal of medicine, 333(5), 276–282. https://doi.org/10.1056/NEJM199508033330502

Saeed, F., Afzaal, M., Shah, Y. A., Khan, M. H., Hussain, M., Ikram, A., Ateeq, H., Noman, M., Saewan, S. A., & Khashroum, A. O. (2022). Miso: A traditional nutritious & health-endorsing fermented product. Food science & nutrition, 10(12), 4103–4111. https://doi.org/10.1002/fsn3.3029

Sta?ska, K., & Krzeski, A. (2016). The umami taste: from discovery to clinical use. Otolaryngologia polska = The Polish otolaryngology, 70(4), 10–15. https://doi.org/10.5604/00306657.1199991

Steaming/Allium vegetables

Nicastro, H. L., Ross, S. A., & Milner, J. A. (2015). Garlic and onions: their cancer prevention properties. Cancer prevention research (Philadelphia, Pa.), 8(3), 181–189. https://doi.org/10.1158/1940-6207.CAPR-14-0172

Zhou, Y., Zhuang, W., Hu, W., Liu, G. J., Wu, T. X., & Wu, X. T. (2011). Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis. Gastroenterology, 141(1), 80–89. https://doi.org/10.1053/j.gastro.2011.03.057

Guercio, V., Galeone, C., Turati, F., & La Vecchia, C. (2014). Gastric cancer and allium vegetable intake: a critical review of the experimental and epidemiologic evidence. Nutrition and cancer, 66(5), 757–773. https://doi.org/10.1080/01635581.2014.904911

Rennie, C., & Wise, A. (2010). Preferences for steaming of vegetables. Journal of human nutrition and dietetics : the official journal of the British Dietetic Association, 23(1), 108–110. https://doi.org/10.1111/j.1365-277X.2009.01018.x

Pellegrini, N., Chiavaro, E., Gardana, C., Mazzeo, T., Contino, D., Gallo, M., Riso, P., Fogliano, V., & Porrini, M. (2010). Effect of different cooking methods on color, phytochemical concentration, and antioxidant capacity of raw and frozen brassica vegetables. Journal of agricultural and food chemistry, 58(7), 4310–4321. https://doi.org/10.1021/jf904306r

Seaweed

Zaharudin, N., Tullin, M., Pekmez, C. T., Sloth, J. J., Rasmussen, R. R., & Dragsted, L. O. (2021). Effects of brown seaweeds on postprandial glucose, insulin and appetite in humans - A randomized, 3-way, blinded, cross-over meal study. Clinical nutrition (Edinburgh, Scotland), 40(3), 830–838. https://doi.org/10.1016/j.clnu.2020.08.027

Škrovánková S. (2011). Seaweed vitamins as nutraceuticals. Advances in food and nutrition research, 64, 357–369. https://doi.org/10.1016/B978-0-12-387669-0.00028-4

British Nutrition Foundation. 2021. URL: https://www.nutrition.org.uk/attachments/article/234/Nutrition%20Requirements_Revised%20Oct%202016.pdf

Tanemura, Y., Yamanaka-Okumura, H., Sakuma, M., Nii, Y., Taketani, Y., & Takeda, E. (2014). Effects of the intake of Undaria pinnatifida (Wakame) and its sporophylls (Mekabu) on postprandial glucose and insulin metabolism. The journal of medical investigation : JMI, 61(3-4), 291–297. https://doi.org/10.2152/jmi.61.291

O'Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P. G., Hughes, H., & Gardiner, G. E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038–2064. https://doi.org/10.3390/md8072038

Sesame seeds

Sohouli, M. H., Haghshenas, N., Hernández-Ruiz, Á., & Shidfar, F. (2022). Consumption of sesame seeds and sesame products has favorable effects on blood glucose levels but not on insulin resistance: A systematic review and meta-analysis of controlled clinical trials. Phytotherapy research : PTR, 36(3), 1126–1134. https://doi.org/10.1002/ptr.7379

Ramírez-Coronel, A. A., Ali Alhilali, K. A., Basheer Ahmed, Y., Almalki, S. G., & Karimian, J. (2023). Effect of sesame (Sesamum indicum L.) consumption on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy research : PTR, 37(9), 3809–3819. https://doi.org/10.1002/ptr.7918

Yargholi, A., Najafi, M. H., Zareian, M. A., Hawkins, J., Shirbeigi, L., & Ayati, M. H. (2021). The Effects of Sesame Consumption on Glycemic Control in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trial. Evidence-based complementary and alternative medicine : eCAM, 2021, 2873534. https://doi.org/10.1155/2021/2873534

Andargie, M., Vinas, M., Rathgeb, A., Möller, E., & Karlovsky, P. (2021). Lignans of Sesame (Sesamum indicum L.): A Comprehensive Review. Molecules (Basel, Switzerland), 26(4), 883. https://doi.org/10.3390/molecules26040883

Soybeans / Tofu / Edamame beans

Nakai, S., Fujita, M., & Kamei, Y. (2020). Health Promotion Effects of Soy Isoflavones. Journal of nutritional science and vitaminology, 66(6), 502–507. https://doi.org/10.3177/jnsv.66.502

Taku, K., Umegaki, K., Sato, Y., Taki, Y., Endoh, K., & Watanabe, S. (2007). Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. The American journal of clinical nutrition, 85(4), 1148–1156. https://doi.org/10.1093/ajcn/85.4.1148

European Food Safety Authority (2010). Scientific Opinion on the substantiation of a health claim related to soy protein and reduction of blood cholesterol concentrations pursuant to Article 14 of the Regulation (EC) No 1924/2006. EFSA Journal. Volume 8, Issue 7.

Zhuo, X. G., Melby, M. K., & Watanabe, S. (2004). Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. The Journal of nutrition, 134(9), 2395–2400. https://doi.org/10.1093/jn/134.9.2395

Green beans

Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules (Basel, Switzerland), 25(22), 5243. https://doi.org/10.3390/molecules25225243

Pon Velayutham Anandh Babu, Dongmin Liu, Chapter 18 - Flavonoids and Cardiovascular Health, Editor(s): Ronald Ross Watson, Complementary and Alternative Therapies and the Aging Population, Academic Press, 2009, Pages 371-392, ISBN 9780123742285, https://doi.org/10.1016/B978-0-12-374228-5.00018-4.

Chen, Z., & Zhang, S. L. (2021). The role of flavonoids in the prevention and management of cardiovascular complications: a narrative review. Annals of palliative medicine, 10(7), 8254–8263. https://doi.org/10.21037/apm-21-1343

Cium?rnean, L., Milaciu, M. V., Runcan, O., Vesa, ?. C., R?chi?an, A. L., Negrean, V., Perné, M. G., Donca, V. I., Alexescu, T. G., Para, I., & Dogaru, G. (2020). The Effects of Flavonoids in Cardiovascular Diseases. Molecules (Basel, Switzerland), 25(18), 4320. https://doi.org/10.3390/molecules25184320

Prawns

Yaqoob, Z., Arshad, M. S., Imran, M., Munir, H., Qaisrani, T. B., Khalid, W., Asghar, Z., & Suleria, H. A. R. (2021). Mechanistic role of astaxanthin derived from shrimp against certain metabolic disorders. Food science & nutrition, 10(1), 12–20. https://doi.org/10.1002/fsn3.2623

Mazokopakis, E. E., Papadakis, J. A., Papadomanolaki, M. G., Batistakis, A. G., Giannakopoulos, T. G., Protopapadakis, E. E., & Ganotakis, E. S. (2007). Effects of 12 months treatment with L-selenomethionine on serum anti-TPO Levels in Patients with Hashimoto's thyroiditis. Thyroid : official journal of the American Thyroid Association, 17(7), 609–612. https://doi.org/10.1089/thy.2007.0040

Chicken 

Jenkins, T. A., Nguyen, J. C., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 8(1), 56. https://doi.org/10.3390/nu8010056

Strasser, B., Gostner, J. M., & Fuchs, D. (2016). Mood, food, and cognition: role of tryptophan and serotonin. Current opinion in clinical nutrition and metabolic care, 19(1), 55–61. https://doi.org/10.1097/MCO.0000000000000237

Pumpkin and sunflower seeds

Dai, Q., Zhu, X., Manson, J. E., Song, Y., Li, X., Franke, A. A., Costello, R. B., Rosanoff, A., Nian, H., Fan, L., Murff, H., Ness, R. M., Seidner, D. L., Yu, C., & Shrubsole, M. J. (2018). Magnesium status and supplementation influence vitamin D status and metabolism: results from a randomized trial. The American journal of clinical nutrition, 108(6), 1249–1258. https://doi.org/10.1093/ajcn/nqy274

National Health Service (NHS). Vitamin E - Vitamins and minerals. (2020). URL: https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-e/#:~:text=Vitamin%20E%20helps%20maintain%20healthy,infection%20(the%20immune%20system).

Shibata, A., Nakagawa, K., Kawakami, Y., Tsuzuki, T., & Miyazawa, T. (2010). Suppression of gamma-tocotrienol on UVB induced inflammation in HaCaT keratinocytes and HR-1 hairless mice via inflammatory mediators multiple signaling. Journal of agricultural and food chemistry, 58(11), 7013–7020. https://doi.org/10.1021/jf100691g

Singh, U., Devaraj, S., & Jialal, I. (2005). Vitamin E, oxidative stress, and inflammation. Annual review of nutrition, 25, 151–174. https://doi.org/10.1146/annurev.nutr.24.012003.132446

Rees, C. A., Bauer, J. E., Burkholder, W. J., Kennis, R. A., Dunbar, B. L., & Bigley, K. E. (2001). Effects of dietary flax seed and sunflower seed supplementation on normal canine serum polyunsaturated fatty acids and skin and hair coat condition scores. Veterinary dermatology, 12(2), 111–117. https://doi.org/10.1046/j.1365-3164.2001.00234.x

Curry powder

Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. The AAPS journal, 15(1), 195–218. https://doi.org/10.1208/s12248-012-9432-8

Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland), 6(10), 92. https://doi.org/10.3390/foods6100092

Green tea / Jasmine tea

Kuriyama, S., Shimazu, T., Ohmori, K., Kikuchi, N., Nakaya, N., Nishino, Y., Tsubono, Y., & Tsuji, I. (2006). Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA, 296(10), 1255–1265. https://doi.org/10.1001/jama.296.10.1255

Yang, G., Shu, X. O., Li, H., Chow, W. H., Ji, B. T., Zhang, X., Gao, Y. T., & Zheng, W. (2007). Prospective cohort study of green tea consumption and colorectal cancer risk in women. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 16(6), 1219–1223. https://doi.org/10.1158/1055-9965.EPI-07-0097

Yuan J. M. (2013). Cancer prevention by green tea: evidence from epidemiologic studies. The American journal of clinical nutrition, 98(6 Suppl), 1676S–1681S. https://doi.org/10.3945/ajcn.113.058271

Isemura M. (2019). Catechin in Human Health and Disease. Molecules (Basel, Switzerland), 24(3), 528. https://doi.org/10.3390/molecules24030528

Williams, J. L., Everett, J. M., D'Cunha, N. M., Sergi, D., Georgousopoulou, E. N., Keegan, R. J., McKune, A. J., Mellor, D. D., Anstice, N., & Naumovski, N. (2020). The Effects of Green Tea Amino Acid L-Theanine Consumption on the Ability to Manage Stress and Anxiety Levels: a Systematic Review. Plant foods for human nutrition (Dordrecht, Netherlands), 75(1), 12–23. https://doi.org/10.1007/s11130-019-00771-5

Black (based) tea 

Takemoto, M., & Takemoto, H. (2018). Synthesis of Theaflavins and Their Functions. Molecules (Basel, Switzerland), 23(4), 918. https://doi.org/10.3390/molecules23040918

Maron, D. J., Lu, G. P., Cai, N. S., Wu, Z. G., Li, Y. H., Chen, H., Zhu, J. Q., Jin, X. J., Wouters, B. C., & Zhao, J. (2003). Cholesterol-lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Archives of internal medicine, 163(12), 1448–1453. https://doi.org/10.1001/archinte.163.12.1448

 Matsumoto, N., Okushio, K., & Hara, Y. (1998). Effect of black tea polyphenols on plasma lipids in cholesterol-fed rats. Journal of nutritional science and vitaminology, 44(2), 337–342. https://doi.org/10.3177/jnsv.44.337

Bond, T., & Derbyshire, E. (2019). Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients, 11(10), 2364. https://doi.org/10.3390/nu11102364

Toker, L., Amar, S., Bersudsky, Y., Benjamin, J., & Klein, E. (2010). The biology of tryptophan depletion and mood disorders. The Israel journal of psychiatry and related sciences, 47(1), 46–55.

Kombucha

Suez, J., Cohen, Y., Valdés-Mas, R., Mor, U., Dori-Bachash, M., Federici, S., Zmora, N., Leshem, A., Heinemann, M., Linevsky, R., Zur, M., Ben-Zeev Brik, R., Bukimer, A., Eliyahu-Miller, S., Metz, A., Fischbein, R., Sharov, O., Malitsky, S., Itkin, M., Stettner, N., … Elinav, E. (2022). Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell, 185(18), 3307–3328.e19. https://doi.org/10.1016/j.cell.2022.07.016

Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C. A., Maza, O., Israeli, D., Zmora, N., Gilad, S., Weinberger, A., Kuperman, Y., Harmelin, A., Kolodkin-Gal, I., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793

Li, R., Luo, W., Liu, Y., Chen, C., Chen, S., Yang, J., Wu, P., Lv, X., Liu, Z., Ni, L., & Han, J. (2022). The investigation on the characteristic metabolites of Lactobacillus plantarum RLL68 during fermentation of beverage from by-products of black tea manufacture. Current research in food science, 5, 1320–1329. https://doi.org/10.1016/j.crfs.2022.07.014

Derrien, M., & van Hylckama Vlieg, J. E. (2015). Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in microbiology, 23(6), 354–366. https://doi.org/10.1016/j.tim.2015.03.002

Peppermint tea

National Health Service (NHS). Peppermint oil. (2021). Available from URL: https://www.nhs.uk/medicines/peppermint-oil/

Chumpitazi, B. P., Kearns, G. L., & Shulman, R. J. (2018). Review article: the physiological effects and safety of peppermint oil and its efficacy in irritable bowel syndrome and other functional disorders. Alimentary pharmacology & therapeutics, 47(6), 738–752. https://doi.org/10.1111/apt.14519

Kline, R. M., Kline, J. J., Di Palma J, & Barbero, G. J. (2001). Enteric-coated, pH-dependent peppermint oil capsules for the treatment of irritable bowel syndrome in children. The Journal of pediatrics, 138(1), 125–128. https://doi.org/10.1067/mpd.2001.109606

Ford, A. C., Talley, N. J., Spiegel, B. M., Foxx-Orenstein, A. E., Schiller, L., Quigley, E. M., & Moayyedi, P. (2008). Effect of fibre, antispasmodics, and peppermint oil in the treatment of irritable bowel syndrome: systematic review and meta-analysis. BMJ (Clinical research ed.), 337, a2313. https://doi.org/10.1136/bmj.a2313

Rooibos tea

McKay, D. L., & Blumberg, J. B. (2007). A review of the bioactivity of South African herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytotherapy research : PTR, 21(1), 1–16. https://doi.org/10.1002/ptr.1992

Sheik Abdul, N., & Marnewick, J. L. (2021). Rooibos, a supportive role to play during the COVID-19 pandemic?. Journal of functional foods, 86, 104684. https://doi.org/10.1016/j.jff.2021.104684

E. Joubert, D. de Beer. Rooibos (Aspalathus linearis) beyond the farm gate: From herbal tea to potential phytopharmaceutical. South African Journal of Botany, Volume 77, Issue 4, 2011, Pages 869-886, ISSN 0254-6299. https://doi.org/10.1016/j.sajb.2011.07.004.